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Statistics of Colored Flux Lines 
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A d-dimensional model of fluctuating flux lines with hard-core interaction is 
considered. For d =  3 this is a description of the Abrikosov flux phase in super- 
conducting systems with short coherence length. Introducing flux lines with 
different colors, one can solve the limit of infinitely many colors. This solution, 
which describes free fermions, is a mean-field approximation in the case of a 
finite number of colors. For d ~ 3  this solution agrees with the result of a 
perturbative treatment of hard-core bosons. Moreover, the entanglement of the 
flux lines has only an irrelevant effect of the colored flux lines. 

KEY WORDS: Second-order phase transition; vortex phase; fermion-boson 
transmutation. 

1. I N T R O D U C T I O N  

The statistics of flux lines (FLs) is related to a number of classical 
problems in statistical physics ranging from the statistics of dimers (~) on a 
d-dimensional lattice to directed walks or directed polymers (2) with 
excluded-volume interaction. Recently it has attracted attention in solid- 
state physics due to its realization as the Abrikosov flux phase (3) of high-T c 
superconductors. Nelson/4) considered the statistics of FLs as a problem of 
interacting Bose world lines. The analogy of FLs and Bose World lines is 
obvious from the path integral representation of both systems. FLs, subject 
to thermal fluctuations, behave like directed polymers. There is a path 
integral for the latter where the internal parametrization by the lengths of 
the polymer or FL appears as the imaginary time of the thermal Bose 
system. Perturbation theory around noninteracting Bose world lines 
(random walks) is rather complicated. In particular, a sensible result can 
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only be obtained from Gaussian fluctuations around a trivial mean-field 
result. (4) 

We started in a previous article from a different point(5): Considering 
hard-core FLs, one can construct an algebra (q algebra) which describes 
the statistics of a grand canonical system. The idea is similar to quantum 
statistics, where one can describe fermions by a Grassmann algebra. (6) In 
contrast to a Grassmann algebra for free fermions or the Gaussian field 
theory of a complex field in the case of free bosons, the field theory on the 
q algebra cannot be solved exactly. However, from the t/algebra it becomes 
obvious that one can write the interacting FLs in terms of fermions subject 
to a random field. (5/In the present article we will investigate a saddle-point 
analysis and the corresponding perturbation theory of this model. For  this 
purpose, we introduce fermions with N different colors. This corresponds to 
a system of FLs with N(2N-1) colors. The model can be solved in the 
limit N ~ or. The solution is a grand canonical system of free fermions. For  
finite N, we may apply a 1IN expansion. The Gaussian fluctuations around 
the mean-field solution [O(1/N)] are massive even at the critical point, 
where the density of FLs vanishes. In contrast, the fluctuations around the 
free bosons in Nelson's case are a relevant perturbation with a vanishing 
mass at the critical point. Moreover, the interaction among these fluctua- 
tions is irrelevant only for d >  3. The advantage of the fermion description 
of the hard-core FLs is not surprising: in d =  2 it was well known (7) that 
free-fermion world lines are equivalent to hard-core FLs. In higher 
dimensions the hard-core interaction is still treated properly by the free- 
fermion saddle point. On the other hand, the free fermions do not describe 
the entanglement of FLs properly, since they carry a phase due to their 
anticommuting property. This is corrected by the fluctuations of the 
random field coupled to the fermions. Fortunately, it turns out that these 
fluctuations (and, therefore, the topological effect of the entanglement) are 
an irrelevant perturbation of the free fermions if N is large or for any N if 
d~< 3. Thus, the free-fermion saddle point is a better approximation than 
the free-boson saddle point if d~< 3. 

A typical configuration of FLs is shown in Fig. 1. The density of FLs 

Fig. 1. A typical configuration of flux lines. 
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is controlled by a fugacity/~ which depends on physical parameters of the 
model. For a type II superconductor in a magnetic field H, for instance, 
this fugacity is proportional to e x p [ - / ~ 2 ~ 0 ( H c 1 -  H)/4~)] ,  where/? is the 
inverse temperature, 2 the magnetic penetration length of the super- 
conductor, and ~o the flux quantum. (3] The lower critical field Hc1 
indicates the transition from the Abrikosov phase ( H > H c l ) ,  where we 
have a nonzero density of FLs, to the Meissner phase (N < Hc1). The order 
parameter which characterizes both phases is the density of FLs, n(/i). 
There are no order-parameter fluctuations in the Meissner phase, because 
it costs too much energy to create even a single FL. Such an asymmetric 
phase transition is known also from dimers on a brick lattice, <1~ where the 
excitations from the ground state are chains of turned dimers. 

We know from a general random walk argument by Fisher (1) that the 
density of FLs obeys a power law n(/~) ~ no(/] c -/~)~ with 

fi=(d-1)/2 if d~<3 (1.1) 

This result will be recovered from the saddle-point calculation in this 
article. Furthermore, we will calculate the density-density correlations, 
which are characterized by a correlation length ~tt for correlations parallel 
to the direction of the FLs and ~• for correlations perpendicular to the 
direction of the FLs. These correlation lengths obey also a power law with 
exponents 

and 

vii = - 1  (1.2a) 

v •  -1 /2  (1.2b) 

As an example for a system of FLs, the London limit of a type II super- 
conductor in the presence of thermal fluctuations is considered in Section 2. 
Then we define our model of interacting FLs on a lattice in Section 2.1. 
The special case of noninteracting FLs is briefly discussed in Section 2.2. In 
Section 3 we introduce an algebra (q algebra) which describes correctly the 
statistics of hard-core FLs and show in Section 4 that this representation is 
related to the statistics of fermions coupled to a random field. In order to 
obtain a soluble limit of the system of FLs, we generalize our model by the 
introduction of colored FLs in Section 5. It turns out that the limit of 
infinitely many colors can be solved (Section 6). Finally, we show in Section 7 
that the result of this limit is not disturbed in a relevant manner if we consider 
only a finite number of colors; i.e., it should be valid even for the original 
model with only one sort (color) of FLs. 
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2. FLUX LINES IN A S U P E R C O N D U C T O R  

A type II superconductor in a sufficiently strong magnetic field is 
characterized by the superconducting order parameter and by the 
magnetization due to flux penetration. The description of this system 
simplifies essentially for an extreme type II superconductor, where the 
magnetic penetration length is very large compared to the coherence length 
of the superconducting state. In this case we may apply the "London 
model," in which one ignores the fluctuations of the superconducting order 
parameter (3) (i.e., the order-parameter field is homogeneous). This might be 
a good starting point for a phenomenological theory of the Abrikosov (or 
flux) phase in the high-To superconductors, since we do not know what the 
theory for the superconducting order parameter (e.g., Ginsburg-Landau 
theory) of these materials is. On the other hand, it is well known that most 
of the high-Tc superconductors are extreme type II materials. 

The London model describes a system of n interacting vortices (or 
FLs) in an external magnetic field which is applied in the z direction. The 
j th FL is defined by its coordinates Q(z) perpendicular to the external 
magnetic field along the z direction. At very low temperatures the coor- 
dinates {rj(z)} do not vary with z; i.e., the FLs form an Abrikosov flux 
lattice. However, for higher temperatures the FLs fluctuate if the thermal 
energy is of the order of the stiffness of the FL. Following the literature, the 
Gibbs free energy of n interacting FLs is given as (3) 

= L + dz+gi~i;  ~ Ko dz Gn ~ alfo i l ~ 2]1/2 ilri(z)~rj(z)l ] 

H f b(r, z) d2r dz (2.1) 4re 

The first term is the energy of a single FL, the second term is the energy 
of the interaction of pairs of FLs, and the third terms is the energy of the 
interaction of the FLs, which produce the internal magnetic field b in the 
superconductor, with the external magnetic field H. Here el is the energy 
per unit length of a FL, 2 is the magnetic penetration length, and the 
coupling constant g is related to the flux quantum 45o = 2rchc/2e and 2 by 

45~ (2.2) 
g = 8rc222 

The function Ko is the modified Bessel function, I8) which is exponentially 
decaying for large arguments: Ko(x)~(Tt/2x)X/2e -X for x ~  or. Now we 
may apply two approximations in order to simplify the expression of Gn : 
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(a) Local fluctuations of the FLs are weak: 

1 + d r i ( z )  2 1 1 / 2  1 dFi(Z ) 2 
dz 1 +~ T (2.3) 

(b) Approximation of the short-range interaction by a hard core on 
a lattice A: 

with 

(24) 

(rj, z )eA 

where the components are (r j )  i = 1, 2,..., N, z = 1, 2,..., L, and 

V~(x) = {O for x = 0  
for x r  

(2.5) 

(2.6) 

The Gibbs free energy then reads 

G.= ~'1 4r~ ]nL2+~-s ~ Iri(z+l)-ri(z)l  2 
z=l i=1 

+ g 22 Llri(z) rj(z)'] 
T Z 

iv~j z=l 

All lengths are measured in units of the penetration length 2. To describe 
the general situation under the influence of thermal fluctuations, we 
introduce a grand canonical ensemble of FLs. This is defined at the inverse 
temperature//by the partition function 

1 
Z =  ~ ~ Z exp(-/~G~) (2.8) 

n>/O {rj(z)} n 

The summation goes over all possible configurations {rj(z)}, of FLs. 
Apparently, this model may undergo a phase transition when the "chemical 
potential" e l -  Hq~o/4Zc of the fugacity ~ = exp[-f l2(e I -Hq~0/4~) ]  
changes its sign. This phase transition is trivial in the sense that it is driven 
only by the fugacity. Defining the lower critical magnetic field He1 by 

He1 = 47zel/~o (2.9) 

the system is in the Meissner phase (no FLs) if H <  He1 (i.e., ff < 1) and in 
the Abrikosov phase (nonvanishing density of FLs) if H >  Hc~ (i.e., ~ > 1). 
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The transition from the Meissner to the Abrikosov phase has special 
properties which are different from most other phase transitions in 
statistical physics. It is related to the fact that the Meissner phase is empty 
because it needs too much energy to create a FL. Therefore, there are no 
fluctuations in this phase. On the other hand, thermodynamic quantities 
(e.g., specific heat) are divergent if one approaches the Meissner phase from 
the Abrikosov phase. Such an asymmetric behavior is also known from 
dimer models on special lattices (1/ (e.g., brick lattice). Due to the lattice 
structure, it is only possible to change the direction of the dimers along a 
line through the entire lattice. This corresponds with the creation of a FL. 

We will discuss in the following mainly the dilute region of the FL 
system. That means we are restricted to the neighborhood of the 
Abrikosov-Meissner transition and to those properties of the FL statistics 
which are related to long-range fluctuations. The weight of a FL element 
is given as 

e x p l - 3 ~ l r i ( z  + 1)-ri(z)l  2] (2.10) 

At low temperatures the weight of line elements parallel to the z direction 
[rj(z + 1)= O(z)] is dominant, whereas for higher temperatures also other 
line elements are important. In particular, near the phase transition the 
system of FLs is dilute and strongly fluctuating. Therefore, we may restrict 
our model to line elements which connect only nearest neighbor points r', r 
and ignore line elements which are parallel to the z axis. The weight of a 
FL element ((r, z), (r', z + 1)) reads then 

with 

51 ) 2(d 1) 
v~,~;~,~+l=exp - f l -~z lr ' - r l2  =r(// ,al)  Z 6r',r+ej (2.11) 

j=l 

r(3, ~)  = exp ( - / ~  ~ )  (2.12) 

ej is the lattice unit vector in j direction perpendicular to the z axis. The 
restriction to nearest neighbor FL elements is not crucial when we consider 
effects on length scales which are large compared to the lattice spacing 2, 
since all types of fluctuations can be presented by only nearest neighbor 
line elements. The advantage of this simplified description is the fact that 
there are only two quantities which depend on the physical parameters, 
namely r and ~. The partition function reads 

Z =  ~ ~(~'C,'~L ~ exp~'-/~ g)~2 ~ ~ V~[lri(z '~rJ(z) l;}  (2.13, 
n)O " {rj} n ( 2 ~S ~=l " 
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We notice that the interaction term does not depend on the parameters, 
due to the hard-core potential V~. The product ~r appears as an effective 
weight of the FL element. Defining the new parameter 

f i=  [ 2 ( d -  1) ~r] -1 (2.14) 

and neglecting the trivial factor 

• N d - I L  

which does not depend on the configurations, we can write the partition 
function on the lattice as 

1 _nLfi(N d l n )L  Z =  ~ ~ [ 2 ( d -  1)3 
n~>O 

{g: 2 }  2.15, = ~' exp - f l - 7 - 2  V;. 
{rj} n i ~ j  z =  1 

Here we have separated the weight of a FL element [ 2 ( d - 1 )  -1] and the 
weight (fi) of empty sites. Thus, we have obtained a simple description of 
the flux (or Abrikosov) phase which will be used for the further 
investigations. 

2.1. A M o d e l  fo r  F luc tua t ing  Flux Lines 

As discussed in the previous section, it is convenient to describe the 
statistics of FLs on a lattice. Then we avoid certain difficulties related to 
the regularization of a continuum model from the beginning. The model, 
which we have obtained from the London theory of type II super- 
conductors after some approximation, has other realizations in statistical 
physics. Therefore, we summarize its definition here. 

Since we are interested in the description of FLs with short-range 
interaction, the lattice spacing corresponds to the characteristic interaction 
length of the physical system. In a type II superconductor, for instance, this 
would be the magnetic penetration length, at least for directions per- 
pendicular to the external magnetic field. For simplicity we will also use 
this lattice constant in the direction parallel to the magnetic field. These are 
physical reasons for the introduction of a lattice model. On the other hand, 
qualitative properties of the statistical model may not be sensitive to 
structures on short scales. This is in particular the case when we consider 
the transition from the Abrikosov to the Meissner phase, where long-range 
fluctuations dominate the behavior of the FLs near the transition point. 
Thus, the lattice spacing is irrelevant for the discussion of critical 
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(asymptot ic)  properties.  To  be more  specific, we define a d-dimensional  
cubic lattice as 

A = { 1,..., N} x { 1,..., N} x . . .  x {1 ..... N} x { 1,..., L} (2.16) 

where the z direction is along 1, 2,..., L. The vector  r =  (Xx, x2,..., xd i) is 
perpendicular  with componen t s  xj ~ { 1, 2,..., N}. The simplest statistics of a 
F L  {r(z)} is now defined on A by its FL  elements which connect  lattice 
points (r, z) with (r + ej, z + 1). The probabi l i ty  of such a FL  element is the 
same in any direction of the lattice unit vector  ej: 

Prob(( r ,  z)  --* ( r + e j ,  z +  1 ) ) =  1 / 2 ( d -  1) (2.17) 

FLs  constructed with these elements have a fixed length and are flexible. 
A generalizat ion to FLs  with variable length will be given elsewhere. 
However ,  we do not  expect a qualitative change of the propert ies  on large 
scales. 

A F L  always starts at the bo t t om z = 1 and terminates  at z = L. Then 
we introduce the hard-core  interact ion between the FLs: FLs  do not touch 
or intersect each other; i.e., different FLs  may  not  occupy the same lattice 
site (r, z). It  is desirable to construct  the F L  statistics in a way such that  
the con t inuum limit leads also to a hard-core  interaction. Therefore,  we 
must  avoid that  FLs  can cross each other  between the lattice points. This 
can happen  when two lines occupy nearest  neighbor  points for a given z. 
Lets assume these points are (Xl ..... x j  ..... x a _ ~ , z )  and (x~, . . . ,x j+l , . . . ,  
Xd_ ~, Z). Then a crossing occurs between z and z + 1 when a FL  continues 
f r o m z t o z + l  as 

( x l , . . . , x i , . . . , x a _ l , z ) - , ( x l , . . . , x j + l  ..... Xd 1 , Z + I )  (2.18a) 

and another  one as 

(xl,..., xj + 1 ..... Xd 1, Z ) - ~  ..... Xj ..... X a _ I , Z + I )  (2.18b) 

(see also Fig. 2). Such a situation, however,  can be c i rcumvented when we 
impose appropr ia te  boundary  condit ions at z = 1: FLs  can only start  at 

% f"  

z .  1 "" / 

Z /,~%% 
/ . /  ~% 

/ % 

Fig. 2. Crossing between lattice points. This situation can be avoided by appropriate 
boundary conditions (see Section 2.1 ). 
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z = 1 from points with odd coordinates x~. Due to our choice of the FL 
elements in (2.13), this means that for z even the xj coordinates are even 
and vice versa. Then FLs cannot sit on nearest neighbor sites and the 
crossing between lattice points is avoided. 

The FLs should not cover the whole lattice. Therefore, we introduce 
a fugacity fi which measures the weight of empty sites on the lattice. Thus, 
we have defined a grand canonical system of FLs on the lattice A. 

Before we investigate the general model of FLs as defined above, we 
should mention that there are three special cases which are exactly soluble. 
The first case is the limit of noninteracting FLs. Then there is the case of 
hard rods where we ignore the thermal fluctuations of the FLs. And finally, 
we have the two-dimensional system; i.e., FLs on a square lattice. The last 
case is relevant as a model for domain boundaries on a surface. This model 
is soluble because it is equivalent to free fermions on the square lattice. (7) 
The latter is based on the fact that the FLs are topologically simple 
because they cannot wind around each other. However, they are subject to 
thermal fluctuations and interaction, in contrast to the first two examples. 
Therefore, the last case might be closest to the general model of FLs in d 
dimensions; in particular, to the superconductor, where d =  3. 

2.2. N o n i n t e r a c t i n g  Flux Lines 

As a simple example, we discuss the partition function (2.15) in 
the case of noninteracting (independent) FLs. A collapse of this grand 
canonical system can be avoided by introducing the constraint that at most 
one line per site can start at z = 1, which corresponds to a surface inter- 
action. The evaluation of Z is then only a simple combinatoric problem. 
Nevertheless, this case is interesting for our investigation of interacting 
FLs, since we can study the effect of the interaction by comparing with the 
results of the noninteracting system. We will show now that the non- 
interacting FLs exhibit a discontinuous behavior of the density of FLs (a 
step as a function of the fugacity/7) for the Abrikosov Meissner transition 

at f i = l .  
According to the model, a FL starts at z = 1 and terminates at z = L. 

Suppose a flux line starts at (r, 1). There are 2 ( d - 1 )  ways to proceed to 
z = 2. In general, there are always 2 ( d -  1) ways to go from z to z + 1. This 
implies [ 2 ( d - 1 ) ]  L possible realizations of FLs starting from one site 
(r, 1). If  we have n FLs starting from fixed different sites at z = 1, there are 
[ 2 ( d -  1)]Ln possible realizations because there is no interaction among the 
FLs in the bulk z > 1. Finally, we can choose 
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possible sites as starting points for FLs at z = 1. Notice that the n! of the 
partition function Z is here already incorporated. Therefore, we get 

( N  2 * ) [ 2 ( d - 1 ) ] L "  (2.20) 

realizations of n FLs on the lattice. Then the partition function reads 

Z =  ~ N 1 #L(Ud ' n)=[ l+f iL] /V" 1 (2.21) 
n = 0  

Since fi is the weight of empty sites, one obtains from the free energy 
F =  (1IN d- *L) log Z the density of noninteracting FLs as 

o# 3F {~ if f i > l  n ( f i ) = l - f i - a T = l - ( l + f i  -L)  ~ = ( l + f i  L) 1~ (2.22) 
if f i < l  

for L ~ o o .  

3. T H E  rl A L G E B R A  

An important fact in quantum statistics is that the field of a free 
particle is characterized by a special algebra according to the nature of the 
particle. For instance, bosons are given by a complex field, while fermions 
are decribed by a Grassmann field. Free fermions are hard-core particles, 
since more than one fermion cannot occupy the same site. This is 
represented by the Grassmann algebra. With respect to the interaction, 
hard-core FLs behave like free fermions. On the other hand, fermions are 
anticommutative objects, whereas FLs are commutative, like bosons. Thus, 
FLs can be considered as world lines of particles which have bosonic as 
well as fermionic properties. We will construct in the following an algebra 
which describes the FLs correctly. 

On the lattice A, we introduce an algebra of variables {t/ ..... s z} over 
the complex numbers. This algebra is chosen to represent the properties of 
the hard-core FL model defined in Section 2. The following properties are 
sufficient: 

(i) The multiplication of t/ .... f/r,z is commutative. 

(ii) ~1 .... Or,~_ are nilpotent [i.e., (r/r,z)t= (qr, z ) l=0 for l >  1]. 

(iii) There is a linear mapping (which we will call integration) S into 
the complex numbers with 

f I-I r/r,--f/r,z = { 10 if A ' = A  (3.1) 
(r,z) E A ' ~ A  if A' r A 
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The result of the integration, the integral, is nonzero only if the product of 
the variables {t/ .... 0r, z} on A is complete. The construction of analytic 
functions (e.g., the exponential function) is obvious in terms of polynomials 
of the t/r, z. 

If is obvious that these variables are closely related to Grassmann 
variables. Writing for the latter {~1 ..... tPl ..... ~2 ..... ~2 .... }, the former 
variables can be expressed as products of the Grassmann variables: 

~r,z= O1 .... 1/12 .... (3.2a) 

Or, z=@l .... ~12 .... (3.2b) 

By means of the variables {r/ .... 0r, z}we define the following "weights": 

I. Each FL element is identified with the "weight" 

Wr, z;r,,z,~]r, zOr,,z, (3.3) 

where the matrix elements of w are given as 

~ l / 2 ( d - 1 )  for r '=r+_ej ,  z ' = z + l  
(3.4) 

Wr, z;<z' = )0 otherwise 

II. Furthermore, we introduce a local "weight" which corresponds to 
the fugacity fir, z of the empty lattice sites: 

~,z~r,~Or, z (3.5) 

By mean of I and II we can write the "weight" of an arbitrary configuration 
of FLs I =  {ri(z)} as 

L 

W I =  U I~ (1-~flr, zl~r, zOr, z) H Wri(z),z;ri(z+l),z+l~ri(z),zOri(z+l),z+l (3 .6)  
z = l  r ri(z)~l 

It is convenient to impose periodic boundary conditions in the z direction 
and free boundary conditions in the other directions. These boundary 
conditions imply that we sum endpoints (z = L) of the FLs over permuta- 
tions of the starting points (z=  1). Free boundary conditions in the z 
direction, however, can be obtained by introducing additional "weights" on 
the surface z =  1, L in order to get complete products according to (3.1). 
Since we are interested in the thermodynamic limit, the discussion of the 
boundary conditions is not so important. 

We obtain the statistics of FLs from the integral over the algebra: the 
statistical weight Pz of a configuration I is 

1 
,3.71 

f{I}  
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where Y.(i~ is the summation over all possible configurations on A. 
Property (ii) implies that lines do not touch or intersect each other, while 
property (iii) guarantees that they must start and terminate on the surface 
z =  1, L. Finally, the weights are always positive due to property (i). The 
partition function Z then reads 

(i} z=l 

With (i)-(iii) we obtain then 

+ flr, z~r,z~]r,z) VI  (1 + Wr, z;r,z + l~r, zOr',z+ 1) 1 
r' 

(3.8) 

= ~ l--I (Wr, z;rc(r,z) + flr, z(~r,z;rc(r,z)) (3.9) 
7z z, r 

rc are here the permutations of the lattice sites (r, z). Thus, the partition 
function of the hard-core FLs is a permanent. The rhs of (3.8) can also be 
written in the standard form of a partition function of statistical mechanics 
as 

r, , ,z' r,z 

The fugacity fir,-- appears here as a chemical potential of the grand 
canonical ensemble. Now we may also express expectation values of the 
statistical ensemble in terms of the variables r/. For instance, the density of 
FLs per lattice site reads 

1 r 
nr ,  z = ~7 ~ j ( 1 -  F~r,z~r, zOr, z ) W z =  l #,.Z ~ tl,,zflr._, exp(-- S) (3.11) 

since we have, due to (ii) and (iii), 

I f {O t if ( r , z ) e l  (3.12) 
-Z ( l - ~ r ' z ~ r ' z O r ' z ) W I =  if (r ,z)q~I  

For the density-density correlation function we find accordingly 

Cr, z;r, z, -- ~ ( 1 -  r zrlr, z~r , z ) (1-  fir, z,tlr,,z,flr,,z,) exp(- -  S ) -  nr, rnr,,z , 

(3.13) 

Unfortunately, we cannot evaluate the expression in (3.9), (3.11 ), or (3.13) 
exactly for any dimension d. Only for d =  2 can the partition function (3.9) 
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be determined due to its analogy to the free fermions discussed in the 
previous section. Then the permanent of (3.9) is identical to the fermion 
de.terminant: 

~I~ (W+fi)r,z;~(~,~)=~ (--1)~H (w--fi)r,z;~(r,z)=det(w--fi) (3.14) 
7r z , r  7r z , r  

This is based on the fact that one can use the Grassmann representation of 
the r/, ~ given in (3.2a), (3.2b). For d =  2 we may integrate then over ~2 and 
~2. In higher dimensions, however, there appears a minus sign, depending 
on the special configuration, since we must order the product of 
Grassmann variables along the direction of the FLs. Due to the anticom- 
mutative relations among these variables, this leads for d >  2 to a minus 
sign for certain configurations. In other words, FLs are topologically dif- 
ferent from free-fermion world lines. The latter change sign if they exchange 
positions, whereas the former do not have a phase dependence. Therefore, 
FLs behave like boson world lines. This observation has led to the idea of 
treating the FL problem as a model of free bosons subject to a perturba- 
tion theory for the interaction. This means that we regard the distinction 
of different topological properties as important and treat the interaction as 
a perturbation. It turned out from perturbation theory that the latter is 
irrelevant only above three dimensions/4) The representation of FLs which 
interact via a hard-core potential by the ~/algebra enables us to introduce 
a fermion representation/5/ The details and the properties of this 
representation will be discussed in the rest of this article, 

4. FERMION REPRESENTATION OF FLUX LINES 

In Section 3 we have seen that the partition function Z of a grand 
canonical system of hard-core FLs is given by a permanent: 

z = ~ H ( w + f i ) x , ~ ( x )  , x = ( r , z )  (4.1) 
zr x 

In general, we may introduce a local fugacity fix. Local expectation values, 
e.g., the local average density of FLs or the density-density correlation 
function, can then be obtained by differentiation of log Z with respect to 
the local fugacity fix. For instance, we get with (3.11) for the density of FLs 

nx = 1 - fix Ofix log Z (4.2a) 
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and from (3.13) 
~2 

Cx,~, = p~/x~, 8/2~ 8#x~------~ log Z (4.2b) 

for the density-density correlation function. It is, therefore, sufficient for 
our purposes to evaluate the partition function of (4.1). As a first step we 
derive a random matrix representation of the permanent. We introduce a 
matrix u with statistically independent matrix elements. The distribution of 
these elements is restricted only by a vanishing mean 

<u~,~,>.=0 

and the variance 
2 <(Ux.,,,) > . =  1 

With 

and 

~x,~' :=  (w~,x')l/2u~,~ ', 

'/x := (Zx) 1/2 

we consider with an arbitrary parameter s 

Ux, x = 0 

<det(s  + 7) det + 7)). 

Since the fi~.x' are statistically independent, the rhs is 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.9) { 7~ =/~x if ~,(x) = rc2(x ) = x 

= <#~.~l(.~)~2x,~2(x)> if x r  7~2(x) 

0 otherwise 

where we have performed a summation over all permutations s~, s2 of 
x e A .  Due to fix, x=0 ,  as defined in (4.5), one has 
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We notice that mixed products of 7x and ~x,~,(x) vanish because of the 
vanishing mean of ux, x,. Finally, the statistical independence of the Ux, x, 
implies 

(ux,~(x)u~l,~2(x)) = ~,~(x),,~2(x)Wx,,~(x) (4.10) 

In the product of the two determinants there appears at most the second 
power of any matrix element ux, x,. Therefore, the restriction of the distribu- 
tion of ux,~, by its mean and its variance is sufficient. Now substituting the 
result of the averaging into the expression in'(4.7), we obtain 

ldet(s~ + ' )  dee ( !  ~ + ' ) ) ,  

= 2 (-1)=~+=21-I [Wx,=~(x)+yx~Sx,,~(x)]a=l(x),,~2(x) 
7~1 ,~g 2 X 

= ~ l-[ [wx,,~(x) + fi,fix,,~(~)] (4.11) 
7~ X 

The rhs is again the permanent of (4.1), which is the partition function of 
the hard-core FL system. It is also remarkable that the rhs does not 
depend on the parameter s. Later we will utilize the freedom of choosing 
this parameter. Thus, we have expressed the partition function Z in terms 
of determinants of random matrices. It is well known that the partition 
function of free fermions is also a determinant ("fermion determinant") 
where t7 describes the motions of the free fermions on the lattice 
("hopping") and 7 is a chemical potential. On a more formal level we can 
introduce Grassmann variables {~,~, ~#x ~ } (~ = 1, 2). The partition function 
Z reads then by means of (4.11) 

Z =  exp O~(z~Ux, x, + ?x6,,~,)O~, dO: d~:  (4.12) 
x x  ~ = 1  u 

where ~. . .  ]-[ de  d~ is the usual "integration" over independent Grassmann 
variables(6) ~'x" and -~ = 0~. The % carries the parameter s, since ~ 1, 2 are 
related to the first and the second determinant of (4.11), respectively: % = s, 
r2 = 1/s. Now ~,:,x' appears as a random field which couples to neighboring 
pairs of fermion fields. 

5. Colored Flux Lines 

If there is only one type of FL, we have seen in the previous section 
that two different Grassmann (fermion) fields 4,~x (~= 1, 2) yield an 
equivalent model. Now we can generalize the fermion representation by 

822/64/1-2-19 
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introducing 2N types of fermions. The partition function (4.12) reads for 
this generalized model 

ZN=lfexpI~ ~ ~9~(z--~N ) ] ) iff c( - - ~  ~,~,+~6x,~, ~, 1-[ O~a~ (5.1) 
x , x '  ~ = 1  u 

with z~=s for ~ = 1 , 2  ..... N, and % = s  -1 for ~ = N +  1, N+2,..., 2N. 
We have introduced a normalization ~ of the random field fix,.,-,, 

since we are interested in the limit N--. ~ .  The latter leads to a soluble 
model due to this normalization: while the number of fermions is 
increasing with N, the contribution of the individual fermion lines (given 
by the propagator ~x,x,) is decreasing with N 1/2. In the next section we 
will investigate the limit N ~  ~.  In the rest of this section, however, the 
meaning of 2N fermions in terms of the FLs will be discussed. For this 
purpose we perform the average over u in the partition function ZN of 
(5.1). This is possible because the averaging can be exchanged with the 
integration over the Grassmann variables. It is convenient to introduce 
Gaussian-distributed matrix elements: 

P(ux,~,) duz,~,=exp - ~ (u~,~,) 2 2x/- ~ (5.2) 

Then the averaging is just a "completing the square" in the exponent of 
(5.1), which leads to 

ZN= exp ~ w~,~, ~ %r~, . . . . .  ' ,x '  
x , x '  cL,~x' = 1 

+ ~ ? I ~  xOx l~dO:dOx (5.3) 

We remember that only a complete product of Grassmann variables 
{02, ~ }  gives a nonvanishing contribution. Therefore, the term with ?x 
can be replaced by a polynom P2N of 

such that 

~ ~ (5.4) 

exp P2~v 1/2 ~ 7 2 0 ; ~ 0 ; ' ~  ' =exp 7 x 2 0 x  x 
c~ 

Then we may combine the Grassmann fields as 

~ 7 ' : = 0 x 0 x ,  0x .= x T x  (5.5) 
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The new variables {~b~ ~' } satisfy the properties (i), (ii) of the t/ algebra in 
Section 3: products of these variables are commutative and they are nilpo- 
tent. However, property (iii) is only valid for ~ = 1, c(--2 (or c~ =2,  ~ ' =  1), 
since they are constructed from the Grassmann algebra. In other words, the 
~b~ ~' are independent only for different indices c~ and c(. The interpretation 
of the partition function in terms of the ~b becomes obvious if we rewrite the 
summation in the exponent: 

+EP2N(fx E O:~'~')]l-IdO;d~; (5.6) 
. . . .  , j j  

We notice that terms with ~ = c( do not contribute in (5.3) and (5.4). There 
are N(2N- 1) terms in Z~ > ~,. We recover the original model of hard-core 
FLs for N =  1, since ~b~ ~ can be replaced by r/~. For N >  1 there are 
N(2N- 1 ) different colors of FLs, where each color (c~, c() is represented by 
the field ~b~x ~' and its conjugate q~'~. FLs with colors (c~, c() and (~", c(") are 
subject to a hard-core interaction if ~ = e" or c~'= c(". Otherwise they do 
not interact. This means that the effective interaction is weaker than in the 
case of a single color. Therefore, the density of FLs will be higher for the 
colored FLs. In particular, the exponent of the density fl is equal to or less 
than that of the FLs with N =  1. Due to the colors we have obtained a 
rescaling of the statistical weight w~,x, by the factor %r~, in (5.6). This 
factor is 1 for N =  1, and is 1, s 2, or s -2 for N >  1. One can rescale the field 
~b~' and its conjugate q~" by the square root of this factor in order to get 
a rescaled fugacity p ~ ' =  (r~T~,)-lfi. Thus, depending on the color, the FLs 
appear with a different fugacity (or chemical potential). 

5.1. Regular izat ion:  Dynamics  of  Fermions 

It is clear from the expression (4.11) that the partition function Z~ can 
vanish for certain realizations of the random matrix u. The free energy 
log ZN is therefore singular. Since these singularities do not have a physical 
origin, we can avoid them by introducing a regularization. In the present 
case, it is convenient to introduce formally a relaxational dynamics for the 
fermions. This leads to a time-dependent Grassmann field 

0 ;  -* 0~,z (5.7) 

in (5.1). Since 02,, and -~ O x,~ are independent Grassmann variables, we can 
rename the conjugate field as 

i~:~,t--~ - -~+ N(mod 2N) ~x,t 
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Moreover, there is a time difference operator for the dynamics such that 
the partition function reads 

ZD, N = exp ~ ~ (O~.tt~,,+, - x.,~'x.,-1 

) ]} , )  ~ + N(mod 2N) U dOx,,dO~,t 
x, x" x, l, g u 

(5.8) 
with 

The dynamics enters in a simple form because we consider the random 
matrix elements ~x,x, as static (time-independent). Thus, we can diagonalize 
the time dependence by a Fourier transformation. In terms of the 
corresponding Matsubara frequency e the partition function is a product 
over e-dependent partition functions: 

Z D ,  N = U Zg- ,N ( 5 . 9 )  

with 

, x',g 
x, x'  

+ O~x,, 7x6x, x, + ux, x'j  Ox,,~ [ I  dr dOx,~ (5.10) 
x,~ u 

In order to understand the regularization, we integrate over the Grassmann 
variables. This leads to 

ie t i+7 ie s.~-~ t7 + 7 

ZE,  N = e t  ~ d e t  1 - - ~ r +  
s ~v+2 ie \ s x / N  7 ie l !  / 

/ J  /u  
(5.11) 

The Matsubara frequency from the relaxational term adds as an imaginary 
term to the Hermetian matrix (0 s) - - / ~ + 7  

0 

(5.12) 
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Therefore, the determinants in Z~, N do not vanish for any realization of u. 
On the other hand, the long-time (low-frequency) limit gives the original 
model as defined before: 

lira Z,,N = det u + 7  det u + 7  (5.13) 
~---r o u 

Thus, the frequency term ie is a regularization of the model. Of course, it 
would not be needed if we treat the model on a finite lattice with 
appropriate boundary conditions, since the partition function cannot be 
zero then. However, this requires a careful discussion of the finite lattice. 
The regularization allows a more liberal study, because only for the expres- 
sions we consider at the end do we have to be careful with the existence of 
the static limit e. We will see that this limit and the thermodynamic limit 
cannot be interchanged. 

6. T H E  N - *  ~ L I M I T  

In order to understand the colored FL model of the previous section 
we have performed the average with respect to the random matrix u in ZN 
of (5.1). TO discuss the asymptotic behavior of ZN for large N, it is more 
convenient to integrate over the Grassmann field ~:~ first. Then we obtain 
the result of Section 5.1, Eq. (5.11), 

Z ~ :  N : 

ie (t + 7 

det 
S - T  

u +7  ie 

• det 

\ s  ~/ N 

1 IINJ2/ 
18 

u 

since { ~ }  are independent Grassmann variables. Using again Gaussian- 
distributed matrix elements Ux, x, as defined in (5.2), we can rescale these 
matrix elements by N-i/2. Then we get 

' s ~ r +  ~ ie (1/s)fiT+ 7 ie 

x ~ exp -- ~-(ux, x,) 2 dux.~, (6.1) 
9C, X '  
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The product I ] '  goes over pairs x, x' = (r, x), (r', z') with (r', z') = 
(r -t- ej, z + 1) (for j = 1, 2 ..... d -  1 ) according to our definition of the FL 
element by Wx,~, in (3.4). The form of the partition function suggests a 
saddle-point approximation: for large N the integral over the matrix 
elements is dominanted by the maxima of the integrand. It will turn out 
that there is only a single maximum for translational invariant realizations 
of ux,~,. We obtain a 1IN expansion from the expansion around this 
maximum. 

The extrema (or saddle points) of the partition function can be 
evaluated from the saddle-point equation 

aUx, x, (Ux, x,) - ~ l o g d e t  s~T+ 7 ie / 

2 f i r+7  

1)} 
- ~ + 7  
S 

ie 

= 0  (6.2) 

The further discussion will be restricted to translational invariant solutions 
u o of (6.2): 

(Uo)x,x,= (Uo)x, x (6.3) 

which 
Fourier components of the solutions can be written as 

with 

for 

1S suggested by the exact solution of the two-dimensional model. The 

1 d - - I  

= ~ cos kj (6.5) 
d -  1 , j =  1 

- ~ < c o ,  k j < ~  (6.6) 

Then a must be determined by the saddle-point equation. We obtain from 
(6.2) for 8 ~ 0 

�9 1~2 _ _  ~;2 . . . . .  dkl  dku_  1 (6.7) G 2 ~ " "  O(S2tTZK 2 -- 7 2) + 0 ~-s 2~ 2~ 
--TZ --TZ 

Uo = [ 2 ( d -  1)31/2 aKe;~O (6.4) 



Statistics of Colored Flux Lines 297 

where 0 is the step function. The integral can be rewritten by means of the 
density 

pd_ t(~c) = 1 lim Im ... ~ cos k j -  ~c- ie 
7I" g l O  --Tt ~ j = l  2zc 2~ 

(6.8) 

The saddle-point condition for a then reads 

1 1 

0"2~2 f Pd 1(~C) dtc + 2 f Pd-~(~:) d~c (6.9) 
h,/sa I I sy/< 

Now we take advantage of the fact that s is a free parameter which can be 
chosen as 

This leads, from (6.9), to 

1 

 2~2f 
17/o-21 

s=o- (6.10) 

1 

Pd_l(tC) dK+2 f pd_l(K) dK (6.11) 
171 

?2= fi is a parameter of the FL model describing the weight (fugacity) of 
empty sites on the lattice. Since the density Pd-1(~) vanishes for l~c] > 1, we 
obtain 

1 

a 2,-~ 2 ~ Pd- 1(~c) d~c for lTI > 1 (6.12) 
d ly/a21 

Furthermore, Pal- 1(~c) ~> 0 and 

f; 2 Pd 1(~) dtr -- 1 (6.13) 

This implies, for fTI > 1, 

fl 0<<. pd--l(K)dK<2 pd ~(~C) dK 4 1 (6.14) 
17/~r21 1/a 2 

and due to (6.12), o-24 1. Consequently, with (6.12), or2=0 if e=0 .  There- 
fore, 7>  1 describes the Meissner phase (no FLs). On the other hand, 
a2=  2 for 7 = 0. The behavior of a2(7) depends on the dimension d for 
0 <1714 1. In particular, we have 

1 

a 2 ~ 2 f  Pd ~(tc) dK for a2<JT] (6.15) 
171 
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0 -2 c a n  be evaluated easily from (6.1 l) for d =  2, 3, because we have 

pl(~c) = 1 (1 - ~c2) - 1/2 0(1 - ~c 2) (6.16) 
rc 

p 2 ( ~ ) = ~  1 K ( ( 1 - ~ c ~ 2 ~ 0 ( 1 - ~ c 2 )  (6.17) 
l+~c \ \ I + K J J  

where K(y) is the complete elliptic integralJ 8) The densities of higher 
dimension have the asymptotic behavior 

Pd l ( / r  (d-3)/2 for ] x [ ~ l  (6.18) 

We are now in a position to evaluate physical quantities which can be 
expressed in terms of the free energy of the infinite system (A T zd), 

1 
F~ N = lim - -  log Z~ N 

' A~zaNIA] ' 

=lfI1og(~Z+10-u~ 

+log  az+lf io ,  k+?[ 2 27t(2z) d - ~ + O ( N  1) (6.19) 

The density of FLs reads then, according to (4.2a), 

n(7)= l - l imf~- f i  F~'N= ~o 2-~7 F~N, (6.20) 

and, with (6.19), 

1 7 f [ 0-2Keim+- 7 
n ( 7  ) ---- 1 - -  l m  - " 2 2 -~- 

+ O(N 1) 

~:ei~ + ? 7 de) d e-  lk 
~2+ i~:ei~ + 7L2J ~-s (2~)d- 1 

(6.21) 

The oJ-integration has been carried out in Appendix A, with the result 

q(7)= 1 -  pa-l(tc)d~c- pa_I(K)+O(N -1) (6.22) 
"~0 ~0 

For 0-2< I?l we get 

1 
n(~,) = f pal- ~(~) d~ + O(N -1) (6.23) 

171 
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We will see in the next section that the terms O(N -1) vanish if I?] ~ 1. 
Thus, the density of FLs vanishes for [?1 ~> 1; i.e., J7[ = 1 (or / i  = 1) is the 
critical point of the Abrikosov-Meissner transition. The asymptotic 
behavior of the density is, in saddle-point approximation, 

n ( ? )~no(1 - [7 [ )  d-l)/2 for [7[ 4 1 (6.24) 

The coefficient no can be logarithmically divergent (e.g., for d =  3), as we 
see from the expression in (6.23). The power law is in agreement with a 
general random walk argument by Fisher (~) for d~< 3. 

From the free energy we can also derive the density-density correla- 
tion function according to (4.2b). A simple calculation leads for 0 .2 < [7[ to 
the longitudinal correlation function 

~2 
C[[,z ~-- "2 G12;o, z G12;o, - z  -[- O(N -1) (6.25) 

With the Green's function defined in Appendix A, 

1 S f~ (~ei~+?)e'~ 
G12. (2g.) d -~ 82 + [tcei~ + 712 , - - r ,  2 ~ - - T O  " " " 

we obtain from Appendix A 

do) d d- l k 

Cii ,z=~j  ~ Kzpd_l(K) dK K zPd_l(K) dtc+O(N-1 ) (6.26) 
I~1 

Pulling the densities out of the integrals, we find an exponential decay of 
the form 

1 Cll ,z=~pd_l( tq)pd_l(~2)? 2 1 -171 z-~ 
z 2- 1 + O(N-') (6.27) 

with some values ~cl, ~c2: 

0 ~< K~ ~< 171 and 1~1 ~/s ~ 1 (6.28) 

Thus, there is a correlation length 

~ l t ~ ( 1 -  17f) -~ for 1o2t ~< 1 (6.29) 

The transverse density-density correlations are isotropic. Therefore, it is 
sufficient to consider the Xl direction for o-2< EY[: 

72 
C• = "-f G12;(rl,0, .,0),0 G12;(- r l , 0 , . . . , 0 ) , 0  - ~ -  O ( N -  1 )  (6.30) 
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Again from Appendix A we obtain 

1 dd-lk  12 
- - h 2  2 - -  Cz.r =~ f e~<qO(72 )(2~z)a_ , + O ( N  -~1 (6.31) 

The ( d -  1 )-dimensional k-integration can be reduced to a one-dimensional 
integration of the form 

t 2 2 1 IDd--2(/) s in[q /~ l (d ,  7, t)] dt + O(N -~) 
C• - rc2r 2 [{d- 1)y - -  l]/(d-- 2) 

(6.32) 
with a characteristic length scale 

~a(d, 7, t )=  {a rccos [ (d -  1 ) 7 - ( d - Z ) t ] }  1 (6.33) 

If we approach the critical point 17[ = 1, the asymptotic behavior of this 
length scale is, for t ~ 1, 

~2 ~ [ 2 ( d -  1){1 - 171 )3 - - 1 / 2  (6.34) 

7. F L U C T U A T I O N S  A R O U N D  THE SADDLE POINT: 
1IN EXPANSION 

The saddle-point approximation, which is also the limit N--* oo of the 
colored FL model, is a model of free fermions. It describes exactly the 
statistics of FLs for d =  2, N =  1 if we substitute 7--* 72= ft. Therefore, 
the fluctuations around the saddle-point solution cannot contribute to 
the model in a relevant manner. The situation might be different in d >  2: 
fluctuations of the random field Ux.x, could lead to a modification of the 
saddle-point result, since they are responsible for the difference from the 
free fermions due to the entanglement of FLs. Nevertheless, we will show 
in this section that the fluctuations are irrelevant with respect to the 
Abrikosov-Meissner transition in any dimension d. For this purpose we 
consider again the partition function Z~, u of (6.1), introducing a free 
energy F~.N: 

, 
" x , x '  2 ' 

with 

F~'N=~ , [ (u~176 ~(~or+6~r)+7  is 

( is { 1/o-)(Zio + ~ )  + 7) } (7.2) 
- log det ( 1/~)(~or + 6~r) + 7 is 
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The random matrix is here separated into the saddle-point solution Uo and 
the fluctuation cSu around Uo. The expansion of F~,N in powers of the 
fluctuations g)u is apparently a 1/N expansion. This becomes obvious when 
we rescale 6u by x/-N: the fluctuations appear with N 1/2 in the 
determinants of F~,~v. In particular, the second-order contribution 
(Gaussian fluctuations) is O(N ~ then. Thus, at least for large values of N, 
we can restrict the investigation of the fluctations to Gaussian fluctuations 
of F~,~v : 

Go .... = !  E (6.x,.,) 2 
x, x, 

+ 7  E Tr2 G'~, 0 6a) G',,~,,, 
. . . . . . .  " 6~1T 0 J X ' , X t '  ' 6bl T 0 x " , x  

(7.3) 

where 

ie (1/a)ao+7) -~ 
G = (7.4a) 

(1/G)ao~ + ,/ i~ 

G' f ie ~Uo+7~ I (7.4b) 

We notive here that the expansion of the second term in (7.2) vanishes for 
any order if a2< 171. This feature of the expansion is related to the fact that 
the FLs and, therefore, ux,x, are directed in the z direction. A discussion of 
this property is given in Appendix B. Since we have already utilized the 
simplification of the saddle point for a2< 171, we will also restrict the 
investigation of the 1IN expansion to this very region of the parameter y. 
The Gaussian fluctuations are then reduced to the first and the second 
terms of F~ ... .  in (7.3). Moreover, we introduce the field 

q)x,j := 6ax, x+e/ (e~ = ej + ez), j = l ,  2 ..... 2 ( d -  1) (7.5) 

since the matrix elements ux, x, are nonzero only for x ' =  x + ej. Then we 
may diagonalize F C ... .  by a Fourier transformation because G and G' are 
translational invariant: 

2(d-- 1) 1 f 
FG ....  = ~ (2~) a 0k, ffk;/,jq5 k, jdak (7.6) 

j , l = l  
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with the wave vector k = ( k  I ..... kd_ 1, co). The 2 ( d -  1) x 2 ( d -  1) stability 
matrix is 

1 1 y A k  , kei(k ,_k) .r  , Ik;l, j = ( d -  1 ) at, j + ~ Re (-2~)a 

1 1 f ei(k k').(~; ~;/Ct, dak , 
+ 20.2  (2rc)d Ck, k 

(7.7) 

with 

Ke-i~ + 7 
A k - 52 + ]~ceiO " + 712 (7.8a) 

i t  
Ck -- 52 + I~:e i~ + 712 (7.8b) 

Here we must be careful with the thermodynamic and the static limit 
(e--+ 0) because they do not interchange. For a finite system, where the 
integrals in (7.6), (7.7) are replaced by sums, we consider the limit e--+ 0. 
Then we can return to the integrals due to the thermodynamic limit. In this 
article we will not discuss the dynamic system where the limits appear in 
reversed order. 

The stability matrix can now be evaluated by performing the 
k-integration. In particular, we find on long scales (i.e., k = 0) 

1 1 0(/r  2 - -  7 2) 
Io;j,l = ( d -  1)6j, t-t- 2a 2 (2=) d_ 1 f ~2 e ik'(e'+ej) d d - l k  (7.9) 

The second term, which is the contribution of the log det term to the 
Gaussian fluctuations, vanishes for lyl > 1 since /s ~ 1. This corresponds to 
the fact that there are no FLs (Meissner phase) for fi = 72 > 1. On the other 
hand, we can evaluate the eigenvalues of Io. For d =  2 we obtain 

1 1 = 2tr 2 -  1 dk  
Io;j.j= 1 +~-~5~2~f ~ 0(~c2-7 2) x-7--- (7.10a) 

and 

llf __ 
10;1 '2  = 10;2 '1  = 2 0  .2 2~ - ~  

2 1 
0(tC2-- 7 ) ~ s d k  (7.10b) 



Statistics of Colored Flux Lines 

With cr given in (6.7), the eigenvalues of Io read 

21 = 2  

and 

303 

(7.11a) 

1 1 f~ ~c2-1dk 1 ) , 2 = 1 - } - ~ - ~  ~ 0(1r - -  7 2 )  ~ T  - -  ~ 2 - ? -  5 for tT [~ l  (7.11b) 

Both eigenvalues are positive for 171 ~ 1; i.e., there are no large fluctuations 
near the critical point. In higher dimensions we can estimate the eigen- 
values of I 0 (see Appendix C) as 

2 j ~ > d - l + ~  - ( d -  1) \ 2 d _ 2  / (7.12) 

which is also positive near the critical point. This means that the critical 
properties at the Abrikosov-Meissner transition are not affected by the 
critical fluctuations for d>~ 2, and there the saddle-point solution is a good 
approximation. 

8. C O N C L U S I O N  

In this article we have discussed the statistics of interacting FLs on a 
lattice which are subject to thermal fluctuations. The model we considered 
is very simple: we restricted the interaction to a hard-core repulsion and 
kept the length of the FLs as fixed. Nevertheless, this might be a good 
description of the FLs in superconductors with short coherence length (e.g., 
high-To superconductors), directed polymers, (2) or, in two dimensions, 
domain walls on surfaces near a commensurate-incommensurate phase 
transition. (7~ FLs, usually considered as Bose world lines, have been 
studied here as a fermion problem: it turned out from our calculation that 
a system of hard-core FLs is equivalent to a system of free fermions coupled 
to a random field. Of course, such a model cannot be solved exactly. 
However, we can start from the free fermions and treat the fluctuations due 
to the random field as a perturbation. If we consider the more general case 
of colored FLs, it is possible to solve the limit of infinitely many different 
colors. The latter, as well as the two-dimensional system with one color, 
are exactly described by free fermions. The N ~  ~ limit appears as a 
saddle-point problem. On the other hand, fluctuations around this saddle 
point are related to an 1IN expansion, such that results for finite values of 
N can be obtained from this expansion. Fortunately, the fluctuations are 
only irrelevant perturbations with respect to the Abrikosov-Meissner 
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transition where the density of FLs is vanishing. However, in the literature 
there are alternative approaches for the case N =  1. As already mentioned 
in the introduction, the FL problem can be treated in terms of interacting 
bosons. It is argued that the interaction is a relevant perturbation only for 
d <  3. Therefore, the mean-field result is a good approximation for d >  3. It 
yields a linear density of FL instead of the power law in (6.24). This was 
also found from a transfer matrix calculation (9) which is based on the 
statistics of two FLs. Thus, it seems to be impossible to continue from 
N ~  oo to N =  1. This observation deserves further investigation. For 
instance, it is possible that there is a critical value Nc which separates the 
validity of the 1 /N  expansion from the validity of the free boson theory. 
Nevertheless, both approaches are in agreement for d ~< 3. In particular, we 
get for the density of FLs the asymptotic behavior near the Abrikosov- 
Meissner transition as [Eq. (6.24)] 

n(7 ) , ,~no(1 -171)  (a-~)/2 for 17l -~< 1 

where the coefficient no is logarithmically divergent for d =  3. For the 
density-density correlation parallel to the external magnetic field (z direc- 
tion) we find [Eq. (6.27)] 

1 p a -  1 - -  t71 z -  l 
CII,_.= ~ I(tr 1(K2)7 2 z2 1 + 0 ( N - l )  

with some values K1, K'2 [see (6.28)]: 

0--.< ~:1 ,.< 17h and 171 -..< ~c2 ~ 1 

The correlation perpendicular to the directions reads [Eq. (6.32)] 

, -- " pd--2(t) s in[r l /~•  7, t)] dt + O ( N  1) 
C'L rl g2r2 [(d 1)7 1]/(d 2) 

This implies a longitudinal correlation length {ll and a transverse correla- 
tion length ~• The asymptotic behavior of these lengths near the 
Abrikosov-Meissner transition (171 "" 1) is [see (6.29)] 

r ~ (I-- [71) -1 

and [see (6.34)] 

~j_ ~ [ 2 ( d -  1)(1-]71)] ~/2 

The fluctuations of the random field coupled to the free fermions are 
related to the effect of entanglements of FLs. The hard-core interaction 
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among the FLs is described by the fermion character of the field theory. In 
the boson approach,(4) on the other hand, the effect of the entanglement on 
the statistics is correctly described already by the free bosons. However, the 
interaction among the FLs can only be treated perturbatively. It turns out 
from the 1/N expansion in the free-fermion approach that entanglement 
effects (i.e., fluctuations of the random field) are irrelevant. In Section 2.2 
we have also discussed the case of noninteracting FLs with the boundary 
condition that at most one FL per site can start at the bottom. This 
boundary condition, which is a hard-core interaction on the surface, 
guarantees a noncollapsing system. A simple calculations shows that, for 
instance, the density of FLs has a peculiar behavior: in contrast to the 
power law in the presence of interactions, we find here a discontinuity 
(step) at the transition point. This implies that the interaction is a relevant 
perturbation. Therefore, the free-fermion saddle point is the appropriate 
description of interacting FLs, since it takes the relevant perturbation into 
account. This observation has been utilized for the investigation of the 
effect of random impurities (quenched local potentials) where we started 
from the free-fermion saddle point. (~~ 

APPENDIXA:  MATRIX ELEMENTS IN T H E 1 / N  EXPANSION 

The following matrix elements occur in the 1/N expansion of the 
fermion determinants: 

( ie ~o + (A.1) 
G:~, ~= fifo+7 ie ~,~, 

Consequently, we have to evaluate in terms of its Fourier components: 

G12; . . . .  - (2=)a -= 

Gl l ; - - r , - -z -  (2~)d rr 

f~ (Keio)+ 7)eioZ+ik-r 
�9 .. ~ ~2+lne;O)+712 dcodd-ak (A.2) 

f n ei~oz + ik - r 
"'" -~ ~2 f_-~e~~ ~_ ~12 do d d- lk 

Fhe co integration can be performed easily. For  this purpose 
convenient to introduce y = e i~, 

1 f~ f(e;~')e ;~z . 1 f ( y ) y  
2--~ -~e2 + ]tce;~ + 7]zaco='2--rri~ ?tc(y-  y ) ( y _  y + ) dy 

with the poles of the integrand 

1 
y_+ - 2tr {B2-}- g2 q-72-]- [(e2-~- N2~-TZ)2--4K272]l/2 } 

(A.3) 

it is 

(A.4) 

(A.5) 
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In particular, we have 

and 

The latter follows from 

y+ y = 1 (A.6) 

l y + [ > l  (A.7) 

1 l Y §  1 = - y +  - 1 = ~-~g {g2_.~ (N __ ,~)2 ..}_ [(g2 _}_ K2 }_ ])2)2 4K2])2-[1/2} > 0  

(A.8) 

The integration in (A.4) is performed along the unit circle. Therefore, only 
the pole at y _  contributes to the integral. This yields eventually, for e ~ 0,  

~---nii ~ ( ~cY + Y ) YZ S--0(72--K2), Z~0 
;m(y-y_)(y-y+) dy~ ( - 7 )  z-l~cz (0(K2_72), 

and yZ 

2zci 71c(y- y_ )(y-  y + ) 

z < 0  

(A.9) 

dy~O (A.lO) 

(A.9) means in particular that matrix elements G12;_r,-z vanish for z < 0 if 
y2 > 1, because of ~c 2 ~< 1. 

APPENDIX B. VANISHING TERMS IN T H E 1 / N E X P A N S I O N  

As discussed in Section 7, the 1IN expansion consists in the expansion 
of the type 

( ie (1/s)(Vto+N-~/2~(t)+,) 
Nlog det (1/s)(fior+ N_~/2 6~r )_ 7 i~ 

( ie (1/S)Oo+7) 
= Nlog det (1/s)t~or + )~ i~ 

,>~1 / (1/s)t~~ + 7 
(B.1) 

W e  obtain, for e ~ 0 ,  

{ I (  i~ (1/S)~o+V)-z(O ~0) ]  e} 
Tr (1/S)~or+V ir ~bl T 

Tr [(G126~r) ~] + Tr [(G~255)' ] = 2 Tr[(G1265T) ~3 (B.2) 
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where G12 and (711 were defined in Appendix A. Now we consider the 
matrix elements on the rhs of (B.2) with respect to the z dependence. We 
remember that 

~ffl . . . . .  ',z ' SL O only for z ' = z + l  (B.3) 

Thus, in the expression 

Tr[(G~2 6zTr) '] = ~ (G12)z,.~(~5#TlT)z,z,(G12)z,z , ' ' '  (G~2)~,t-,.~,,-,(affl-),,, ,,,z 

= 2 (G12):~ z(~5(t)z', e(G12)z'- z ' " "  (G12)z,~ ~,- s-~,(6fi)z.e"-', 
(B.4) 

one finds 
z ( k +  1) = ~(k)__ 1 (B.5) 

due to &7. Therefore, there must be at least one pair Z (k), ~(k) with 

Z (k) > z (k) (B.6) 

because of the trace. From Appendix A we know that, for z > 0, 

Gle.z ~ 0 if 72 > 1 (B.7) 

As a consequence, the expansion terms vanish for 72 > 1. 

A P P E N D I X C :  E S T I M A T I O N  OF THE E I G E N V A L U E S  OF THE 
STABIL ITY  M A T R I X  

Here we will estimate the eigenvalues of Io, 

l 1 ~ O(/s eik.(el+el)dd_lk 
Io;;,s = ( d -  1 )(~j,l "9 20.2 (2re)a_ 1 J K 2 

Because of the step function the wave vector k i in the direction per- 
pendicular to the z axis is restricted to k j ~  0 or kj,-~ +g if 171 ~ 1. There- 
fore, the diagonal elements of Io are 

1 1 j eO(/s e2ikJda~1k..~d_l 1 
Io;zj = ( d -  1) -f 20.2 (27z)a_, /s 27---5 (c.1) 

since 

1 1 f 0(/s - -  7 2) de- ik (C.2) 0.2 
(2n) d- 

822/64/1-2-20 
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The off-diagonal elements (i.e., j # l) of Io can be estimated as 

1 1 O(tc2-?2)eik.(e~+ej)da_lk <~-- 
[Io,j, ll-- 20.2 (2z)d__1 ~2 272 (c.3) 

Suppose 1~ is the stability matrix consisting only of the off-diagonal 
elements of Io. Its eigenvalues 2j can be estimated from above as 

2 ( d - -  1 ) 1 
' ' - < - - 2 ( d -  1 ) [ 2 ( d -  1 ) -  1] (C.4) q2jI2~<Tr(I;2) = Y, (Io)j,z(Io)t,j--~474 

i,l=O 

This implies for the eigenvalues of Io 

1 

1 
>_-d-1+--I:~;t  

272 -- 

> ~ d - l + ~  \ 2 d - 2 J  

> 0  (c.5) 

f o r  I~1 ~ 1. 
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